\qquad

Section 7.3 Math Link

This worksheet will help you with the Math Link on page 277.
You are designing a park that includes a large parking lot that will be covered with gravel.

1. Design two different-shaped parking lots using any single shape or combination of regular shapes. Include the dimensions on a drawing of each parking lot design. Note that you will need to be able to calculate the areas of your parking lots. Each area should be a different shape. Make them no less than $200 \mathrm{~m}^{2}$ and no greater than $650 \mathrm{~m}^{2}$.
2. Calculate the area of each of your parking lots.
3. Look at the picture of the truck on page 277. A truck with dimensions similar to those shown in the picture will deliver the gravel.
a) The length is $(x+4) \mathrm{m}$, the width is $x \mathrm{~m}$, and the depth is 1 m . Write an expression for the volume of the truck.
b) You want to fill each parking lot with gravel to a depth of 5 cm . What decimal number represents 5 cm expressed in metres? \qquad .
c) Divide the volume of your truck by this decimal number. This is the approximate area that a single load of gravel will cover to the required depth.
4. There are three sizes of trucks that can deliver the gravel. The widths are $1.5 \mathrm{~m}, 2 \mathrm{~m}$, and 3 m . Approximately, how many truckloads would it take for each truck size to deliver the required amount of gravel for each of your parking lots? You will cover each parking lot to a depth of 5 cm .
a) Collect information about the volume of one truckload for each truck size. Use a table like the one below. An example, using a truck width of 1 m , has been done for you.
\qquad
\qquad

Volume for Each Truck Size			
Truck Width, x $(\mathrm{~m})$	Length, $\boldsymbol{x + 4}$ (m)	Depth (m)	Volume of One Truckload $\left(\mathbf{m}^{3}\right)$
1	$1+4=5$	1	$1 \times 5 \times 1=5$

b) Collect information about the volume of gravel needed to fill each of your parking lots to a depth of 5 cm . Use a table like the one below.

	Area (m$\left.{ }^{\mathbf{2}}\right)$	Depth (m)	Volume (m³)
Parking Lot A			
Parking Lot B			

c) Determine the approximate number of truckloads for each truck size it takes to cover each of your parking lots. Use a table like the one below. Note that if you get a decimal value for the number of truckloads, you will need to round up because you cannot have a partial truckload.

	Volume Nolume of One Truckload $\left(\mathbf{m}^{\mathbf{3}}\right)$	Nor Parking Lot A $\left(\mathbf{m}^{\mathbf{3}}\right)$	Number of Truckloads to Cover Parking Lot A	Volume Needed for Parking Lot B $\left(\mathbf{m}^{\mathbf{3})}\right.$	Number of Truckloads to Cover Parking Lot B
1.5-m width					
2-m width					
3-m width					

5. Which truck size do you think would be the most efficient to use for each of your parking lots? Explain your reasoning.
