\qquad

Chapter 5 Problems of the Week

1. The numbers $4, b, c, d, e, 39$ make an arithmetic sequence. What is the sum of b and c ?
2. Susan has twice as many dimes as nickels, and five times as many pennies as dimes. If she has $70 ¢$ in total, how many of each coin does she have?
3. a) If $a=x^{2}, b=x$, and $c=1$, what is the difference between $2 a+2 b+2 c$, and $a+b+c ?$
b) In part a), if $x=1$, what is the difference between the two?
4. Triangular numbers are $1,3,6,10$, 15, A pattern is derived from the triangular numbers that produces the following numbers: 4, $36,144, \ldots$. Find the algebraic expression that describes this pattern.
5. The distance travelled by an object falling on Earth is equal to $\frac{1}{2} a t^{2}$, where a is the acceleration due to gravity, and t is time, in seconds. On Earth, the acceleration due to gravity is about $10 \mathrm{~m} / \mathrm{s}^{2}$. If the gravity of the moon is $\frac{1}{6}$ the gravity of Earth, how will that affect the polynomial for distance?
Write a polynomial that could be used to find the distance an object falls in a given amount of time on the moon. Write a sentence that describes the difference between the Earth and the moon's version of the polynomial.
