Chapter 5 Problems of the Week

1. The numbers 4, b, c, d, e, 39 make an arithmetic sequence. What is the sum of b and c?	 2. a) If a = x², b = x, and c = 1, what is the difference between 2a + 2b + 2c, and a + b + c? b) In part a), if x = 1, what is the difference between the two?
3. Susan has twice as many dimes as nickels, and five times as many pennies as dimes. If she has 70¢ in total, how many of each coin does she have?	4. Triangular numbers are 1, 3, 6, 10, 15, A pattern is derived from the triangular numbers that produces the following numbers: 4, 36, 144, Find the algebraic expression that describes this pattern.
5. The distance travelled by an object falling on Earth is equal to $\frac{1}{2}at^2$, where	
<i>a</i> is the acceleration due to gravity, and <i>t</i> is time, in seconds. On Earth, the acceleration due to gravity is about 10 m/s ² . If the gravity of the moon is	
$\frac{1}{6}$ the gravity of Earth, how will that affect the polynomial for distance?	
Write a polynomial that could be used to find the distance an object falls in a given amount of time on the moon. Write a sentence that describes the difference between the Earth and the moon's version of the polynomial.	

BLM 5-4