\qquad
\qquad

Section 3.3 Math Link

This worksheet will help you with the Math Link on page 113.
The cube has a side length, s, of 10 cm . The cylinder has a height, h, of 10 cm and a radius, r, of 10 cm .

1. Follow the steps to calculate the surface area of each shape.

Cube

S.A. $=6 \times$ area of one square face
S.A. $=6 \times \ldots \times \ldots$ Use the variable in the diagram.
S.A. $=6 \times{ }^{2}$
S.A. $=6 \times{ }^{2}$ Substitute.
S.A. = \qquad cm^{2}

Cylinder

S.A. $=2 \times$ area of circular end + area of rectangular wraparound
S.A. $=2 \times \pi \times _^{2}+2 \times \pi \times \ldots \times \ldots$ Use the variables in the diagrams.
S.A. $=2 \times \pi \times \quad{ }^{2}+2 \times \pi \times{ }^{2}$
S.A. $=2 \times \pi \times \quad^{2}+2 \times \pi \times$ _ 2 Substitute.
S.A. = \qquad $+$ \qquad
S.A. $=\ldots \quad \mathrm{cm}^{2}$ Express to the nearest tenth of a square centimetre.
2. Determine the difference in the surface areas of the shapes.

Difference = surface area of \qquad - surface area of \qquad
Difference = \qquad - \qquad
Difference = \qquad cm^{2}

Which shape requires more material? \qquad
How much more? \qquad cm^{2}
3. Determine the total surface area of the shapes.

Total = surface area of \qquad + surface area of \qquad
Total = \qquad $+$ \qquad
Total = \qquad cm^{2}

