Section 3.3 Math Link

This worksheet will help you with the Math Link on page 113. The cube has a side length, s, of 10 cm. The cylinder has a height, h, of 10 cm and a radius, r, of 10 cm.

1. Follow the steps to calculate the surface area of each shape.

Cube

- $S.A. = 6 \times \text{area of one square face}$
- $S.A. = 6 \times$ Use the variable in the diagram.
- $S.A. = 6 \times 2$
- $S.A. = 6 \times ___^2$ Substitute.
- $S.A. = cm^2$

Cylinder

- $S.A. = 2 \times \text{area of circular end} + \text{area of rectangular wraparound}$
- S.A. = $2 \times \pi \times \underline{\hspace{1cm}}^2 + 2 \times \pi \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$ Use the variables in the diagrams.
- $S.A. = 2 \times \pi \times \underline{\qquad}^2 + 2 \times \pi \times \underline{\qquad}^2$
- S.A. = $2 \times \pi \times$ ² + $2 \times \pi \times$ ² Substitute.
- S.A. = ____ + ___
- S.A. =_____ cm² Express to the nearest tenth of a square centimetre.
- **2.** Determine the difference in the surface areas of the shapes.

Difference = surface area of _____ - surface area of _____

Difference = $_$ – $_$ cm^2

Which shape requires more material?

How much more? cm²

3. Determine the total surface area of the shapes.

Total = surface area of _____ + surface area of _____

Total = ____ + ____

Total = $__$ cm²