Name: _____ Date: ____

BLM 1-12

Section 1.3 Math Link

This worksheet will help you with the Math Link on page 35.

1. A standard playing card measures 6.5 cm by 9 cm. There are 52 cards in a deck. When placed one on top of the other, the 52 cards make a rectangular solid that is 1.5 cm high. Complete the following steps to calculate the surface area of the rectangular solid.

Area of one card $= (\underline{\hspace{1cm}} \times \underline{\hspace{1cm}}) = \underline{\hspace{1cm}} \operatorname{cm}^2$ Perimeter of one card $= (2 \times \underline{\hspace{1cm}}) + (2 \times \underline{\hspace{1cm}}) = \underline{\hspace{1cm}} \operatorname{cm}$ Height of stack of 52 cards $= \underline{\hspace{1cm}} \operatorname{cm}$

Surface = 2(area of one card) + (perimeter of one card) × (height of stack of 52 cards)

= 2 (____) + (____) × (____)

= ___ + ___

= cm²

- **2.** Sticky note pads come in a variety of shapes and sizes. One type is in the shape of a square that measures 9.3 cm by 9.3 cm. It comes in stacks of 12 pads and each pad is approximately 1 cm deep.
 - a) If the 12 pads are placed one on top of the other, what is the total depth?
 - **b)** Calculate the surface area of the 12 pads if they are placed one on top of the other.
 - c) Picture the pads in two stacks of 6 pads, side by side. What are the dimensions of this new organization of the pads?

 $length = \underline{\hspace{1cm}} cm \hspace{1cm} width = \underline{\hspace{1cm}} cm \hspace{1cm} height = \underline{\hspace{1cm}} cm$

- **d)** Calculate the surface area of the new organization of the pads.
- **e)** How do the two surface areas compare?
- **3.** Decide on dimensions for playing cards or notepads. For playing cards, assume that the depth is the same as in #1. For notepads, choose your own depth. State your dimensions and calculate the surface area of your pack of 52 cards or your notepads.