Chapter 10

Working with Circles

The diameter is the distance across a circle through its centre. The diameter of a circle is twice the length of the circle's radius. The circumference is the distance around a circle.
$d=2 r$ or $r=\frac{d}{2}$, where $r=$ radius and $d=$ diameter

$C=\pi d$ or $C=2 \pi r$, where $C=$ circumference, $r=$ radius, and $d=$ diameter of a circle.
The radius of a circle is 2.4 cm .
The diameter is $d=2 r$. The circumference is $C=\pi d$.

$$
2(2.4)=4.8=\pi(4.8)
$$

The diameter is $4.8 \mathrm{~cm} . \approx 3.14(4.8)$
≈ 15.07

The circumference is about 15.07 cm .

1. Measure the diameter of each circle.
a)

b)

2. a) Estimate the circumference of each circle in \#1.
b) Calculate the length of the circumference for each circle in \#1. Use 3.14 as an approximate value for π.

Working with Angles

You can estimate the size of an angle in relation to 90° or a quarter turn.

The angle \qquad is less than 90°. You could refine your estimate by
considering its size compared to
 or 90° and \qquad or 45°. You might conclude that the angle is between 45° and 90°, but closer to 45°. The actual measure of the angle is 60°.
3. Estimate the size of each angle.
a)

b)

c) \qquad
4. Measure each angle in \#3.
5. Sketch an angle that you estimate has a measure of 55°. Then, use a protractor to draw an angle that measures 55°. How close was your estimate to the actual angle measure?
6. Draw an angle that measures 150°.

Bisecting Angles

An angle bisector divides an angle into two equal parts.
OB bisects $\angle \mathrm{AOC}$ making $\angle \mathrm{AOB}=\angle \mathrm{BOC}$.
You can bisect an angle by:

- using paper folding
- using a ruler and a protractor

7. Bisect each angle.
a)

b)

c)

8. Draw $\angle A B C=70^{\circ}$. Then, draw the angle bisector and label it $B X$. What is the measure of $\angle A B X$? How do you know?

Perpendicular Bisectors

A perpendicular bisector is a line that divides a line segment in half and is at right angles $\left(90^{\circ}\right)$ to the line segment. DC is the perpendicular bisector of AB.

You can make a perpendicular bisector using:

- paper folding
- a ruler and a right triangle

9. Draw the perpendicular bisector for each line segment.
a)

b)

10. Draw the perpendicular bisector for diameter AB. What
information do you know for sure about $A B$ or its perpendicular bisector?

