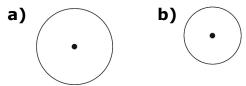

Name:

Date:

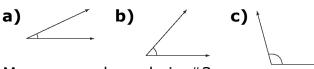

Working with Circles

Chapter 10

Get Read

1. Measure the diameter of each circle.

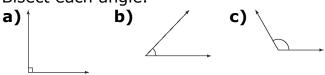
- **2. a)** Estimate the circumference of each circle in #1.
 - b) Calculate the length of the circumference for each circle in #1. Use 3.14 as an approximate value for π.


Working with Angles

You can estimate the size of an angle in relation to 90° or a guarter turn. \longrightarrow is less than 90°. You could refine your estimate by The angle \land considering its size compared to 1 or 90° and 1 or 45°. You might conclude that the angle is between 45° and 90°, but closer to 45°. The actual measure of the angle is 60°.

3. Estimate the size of each angle.

4. Measure each angle in #3.

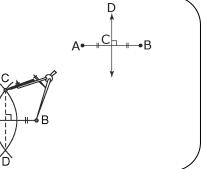

- **5.** Sketch an angle that you estimate has a measure of 55°. Then, use a protractor to draw an angle that measures 55°. How close was your estimate to the actual angle measure?
- 6. Draw an angle that measures 150°.

Bisecting Angles

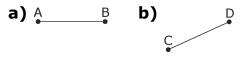
An *angle bisector* divides an angle into two equal parts. OB bisects $\angle AOC$ making $\angle AOB = \angle BOC$. You can bisect an angle by: • using paper folding

using a ruler and a protractor

7. Bisect each angle.


8. Draw $\angle ABC = 70^{\circ}$. Then, draw the angle bisector and label it BX. What is the measure of ∠ABX? How do you know?

Perpendicular Bisectors


A *perpendicular bisector* is a line that divides a line segment in half and is at right angles (90°) to the line segment. DC is the perpendicular bisector of AB.

You can make a perpendicular bisector using:

- paper folding
- a ruler and a right triangle

9. Draw the perpendicular bisector for each line segment.

10. Draw the perpendicular bisector for diameter AB. What information do you know for sure about AB or its perpendicular bisector?

